New hole transport layers for PV technology developed at MCI, SDU

Thin, crystalline films of Molybdenum oxide with very high work function have recently been developed at MCI, SDU. The films are formed through a reactive sputtering process that has the advantage of controlling the precise compositions of the films via tuning of the oxygen partial pressure during the growth process. The researchers at MCI, SDU has together with researchers at UPMC, Paris and the LBL facility at Berkeley demonstrated that rapid UHV annealing of the reactively sputtered films can lead to a large increase in the work function, which makes them highly relevant as hole contact layer in optoelectronic devices, for examples in new PV technology. The findings are published in the journal ACS Applied Materials and Interfaces in Feb 2017 (DOI: 10.1021/acsami.6b14228), where details on the correlation between the nanoscale structure and the electronic properties of the films are provided, which is the first time such a correlation is detailed for these metal-oxide films.